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Abstract Multivariance in science and engineering causes problematic situations
even for continous and discrete cases. One way to overcome this situation is to decrease
the multivariance level of the problem by using a divide—and—conquer based method.
In this sense, Enhanced Multivariance Product Representation (EMPR) plays a part in
the considered scenario and acts successfully. This method brings up a finite expan-
sion to represent a multivariate function in terms of less-variate functions with the
assistance of univariate support functions. This work aims to propose a new EMPR
based algorithm which has two new features that improves the determination process
of each expansion component through Fluctuation Free Integration method, which is
an efficient method in evaluating multiple integrals through a universal matrix rep-
resentation, and increases the approximation quality through inserting a piecewise
structure into the standard EMPR algorithm. This new method is called Fluctuation
Free Integration based piecewise EMPR. Some numerical implementations are also
given to examine the performance of this proposed method.
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1 Introduction

Enhanced Multivariance Product Representation (EMPR) is a recently developed tool
for representing multivariate functions [1–3]. It is an extension to high dimensional
model representation (HDMR) which is used for approximating multivariate func-
tions and modelling multivariate problems [4–9]. Both methods are based on divide-
and-conquer philosophy and they include multivariate integration evaluations under a
product type weight over orthogonal geometries. Actually, the EMPR method covers
HDMR because if all support functions are taken as unit constant functions, then EMPR
acts as HDMR. One of the most important difference between these two methods is
that the HDMR method produces better approximations when the given multivari-
ate function has purely additive nature whereas HDMR becomes poor if the given
function has purely or dominantly multiplicative nature. This time, instead of HDMR,
the EMPR method should be used for obtaining high quality approximations to the
multivariate functions under consideration.

The EMPR expansion is a finite sum and has 2N terms to exactly represent the
given multivariate function having N independent variables. The first term of the
expansion is the constant component, the next N (N − 1)/2 terms are the univariate
ones which are followed by the higher variate components. The main purpose in the
EMPR method is to obtain the structure of each EMPR component. However, the
algorithm in finding these components includes multiple integrations, such as to get
the structure of the constant EMPR component, we need to evaluate N -tuple integrals
while N − 1-tuple integration evaluation is needed for the structure of each uni-
variate EMPR component. The higher variate components need similar evaluations.
This means, when N tends to grow unboundedly, both the total number of expansion
terms to be specified and the total number of integrals to be evaluated for this speci-
fication process grow undesirably. But it is obvious that to calculate whole terms of
that expansion is a quite difficult process. For these reasons, the EMPR method is
assumed to be as an approximation method, that is, only first few terms of its expan-
sion are utilized in the representation. Thus, the approximation quality becomes a
very important issue for the method. This can be achieved by taking as many terms as
possible from the expansion. However, it is not a preferred case since this increases
the computational complexity dramatically. The other way is to specify the most
appropriate support function or weight function structures. Thus, the optimization
processes on either weight or support functions are needed. There is a study related
with optimization on weight function [10] but optimization on support functions is
quite hard because of the nonlinear equations encountered during the corresponding
process.

In this work, we focus on two important points. One is to get rid of evaluating mul-
tiple integrals analytically. For this purpose, we insert a new procedure into EMPR
philosophy to easily get the solutions of the multiple integrations appearing in the
considered method. This procedure includes the Fluctuation Free Integration method.
This method uses the Fluctuationlessness Theorem and allows us to use summations
instead of integrals with the help of universal matrix representation of the indepen-
dent variables of the function under consideration to evaluate the multiple integrals
appearing in EMPR [11–14].
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The second focus point of this work is to increase the quality of the mentioned
EMPR approximations through a newly developed EMPR based method. This new
method is called “Fluctuation Free Integration Based Piecewise EMPR (FFI-Piecewise
EMPR)”. In this new algorithm, we divide the whole N dimensional EMPR geometry
corresponding to the related problem domain into a number of N dimensional subge-
ometries and then we obtain Fluctuation Free Integration Based EMPR (FFI-EMPR)
approximants for each subgeometry. Finally, the superposition of these subgeometries
are built to obtain an approximate analytical structure for the given problem domain.

Using subgeometries are also a way of constructing models occured in different
kind of problems such as image restoration [15], periodic function approximation [16]
and multivariate data modelling [17].

The paper is organized as follows. The second section includes the mathematical
background related to the details of the proposed method. This mathematical back-
ground is composed of the standard EMPR method and the Fluctuation Free Integration
method. The third section contains the preliminary steps of our proposed method. The
algorithm of FFI-EMPR is given in this section. The FFI-Piecewise EMPR method,
which is the final algorithm proposed in this work, is given in the fourth section. The
fifth section covers a number of numerical implementations to observe the perfor-
mance of the proposed method while concluding remarks are discussed in the last
section.

2 Mathematical background

The EMPR method has a finite expansion including support functions to represent
a given multivariate function in terms of less variate functions. It is an extension to
HDMR philosophy and the proposed method of this work is based on this algorithm.
This section covers the basic details of this already known method.

In addition, it is also well known that the evaluation of multiple integrals appearing
in this algorithm urges us to develop a new procedure to get rid of the disadvantages
of the mentioned integrals. This work uses the Fluctuation Free Integration method
for this purpose. The details of this method are also given below.

2.1 The EMPR method

The EMPR expansion aims to decompose a multivariate function, f (x1, . . . , xN ),
having N independent variables, into less variate function components through the
following finite expansion

f (x1, . . . , xN ) = f0

N∏

j=1

s j
(
x j
)+

N∑

i=1

fi (xi )

N∏

j=1
j �=i

s j
(
x j
)

+
N∑

i1,i2=1
i1<i2

fi1i2

(
xi1 , xi2

) N∏

j=1
j �=i1,i2

s j
(
x j
)+ · · · + f1...N (x1, . . . , xN )

(1)
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where s j (x j )s are the support functions. Here, the problem domain is defined over the
hyperprism [a1, b1]×· · ·×[aN , bN ] for generality [1,18]. The method does not bring
any restrictions on the structure of the support functions, that is, there is no obligation
that each support function should be univariate.

The EMPR components can be uniquely determined by using any chosen support
function set. Of course, the selection process of the support functions is a very impor-
tant issue for determining the EMPR components accurately, that is, the structure of
the support functions effect the performance of EMPR directly. Hence, the approxi-
mation quality mostly depends on the selection of the support functions appropriately.
Constructing a new method for support function selection is out of scope of this work
and in this sense the following definition will be used to determine the efficient support
function structures [1]

s j (x j ) =

∫ b1
a1

dx1 · · · ∫ b j−1
a j−1

dx j−1
∫ b j+1

a j+1
dx j+1 · · · ∫ bN

aN
dxN f (x1, . . . , xN )

N∏
i=1
i �= j

Wi (xi )

⎡

⎣∫ b j
a j

dx j W j (x j )
[∫ b1

a1
dx1 · · · ∫ b j−1

a j−1
dx j−1

∫ b j+1
a j+1

dx j+1 · · · ∫ bN
aN

dxN f (x1, . . . , xN )
]2 N∏

i=1
i �= j

Wi (xi )

⎤

⎦

1
2

(2)

Now, to determine the components of the EMPR expansion given in (1), we define the
following vanishing conditions [1]

bi�∫

ai�

dxi� Wi�

(
xi�

)
si�

(
xi�

)
fi1,...,ik

(
xi1 , . . . , xik

) = 0, xi� ∈ {xi1 , . . . , xik

}
(3)

The normalization conditions given below are also defined to get rid of the complicated
formulae similar with the HDMR philosophy [1]

bi∫

ai

dxi Wi (xi ) = 1,

bi∫

ai

dxi Wi (xi )si (xi )
2 = 1, 1 ≤ i ≤ N (4)

We also define the following projection operators to determine the constant and uni-
variate terms of EMPR

I0 f (x1, . . . , xN ) ≡
b1∫

a1

dx1W1(x1) · · ·
bN∫

aN

dxN WN (xN )

N∏

j=1

s j (x j ) f (x1, . . . , xN )

(5)

Ii f (x1, . . . , xN ) ≡
b1∫

a1

dx1W1 (x1) · · ·
∫ bi−1

ai−1

dxi−1Wi−1 (xi−1)

bi+1∫

ai+1

dxi+1Wi+1
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× (xi+1) · · ·
bN∫

aN

dxN WN (xN )

N∏

j=1
j �=i

s j
(
x j
)

f (x1, . . . , xN ) (6)

If the operator, I0, is applied to the both sides of the EMPR expansion given in (1)
under the assumptions given in (3) and (4), the general structure of the constant term
is obtained as

f0 =
b1∫

a1

dx1W1(x1) · · ·
bN∫

aN

dxN WN (xN )

N∏

j=1

s j (x j ) f (x1, . . . , xN ) (7)

while the structure of the univariate terms is determined through the operator Ii as
follows

fi (xi ) =
b1∫

a1

dx1W1 (x1) · · ·
bi−1∫

ai−1

dxi−1Wi−1 (xi−1)

bi+1∫

ai+1

dxi+1Wi+1 (xi+1) · · ·

×
bN∫

aN

dxN WN (xN )

N∏

j=1
j �=i

s j
(
x j
)

f (x1, . . . , xN ) − f0si (xi ) (8)

Because of taking all EMPR components into consideration causes high computational
complexity, the EMPR expansion is truncated at some level, that is, only a few first
components are used to obtain a representation for the given multivariate function.
This is why we are going to deal with at most the univariate EMPR components in this
work. In this sense, we do not intend to give more details about the general structures
of the higher variate terms of EMPR. However, they can be determined by using the
same philosophy.

Truncating the EMPR expansion at some level results in representing the given mul-
tivariate function through EMPR approximants. The constant and univariate EMPR
approximants can be expressed as

π0(x1, . . . , xN ) = f0

N∏

j=1

s j (x j ),

π1(x1, . . . , xN ) = π0(x1, . . . , xN ) +
N∑

i=1

fi (xi )

N∏

j=1
j �=i

s j (x j ) (9)

while the approximants including higher variate EMPR components can be written in
a similar manner.
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To measure the EMPR approximation qualities, the following EMPR truncation
quality measurers are utilized for the constant and univariate cases [1]

σ
(e)
0 ≡ 1

‖ f ‖2

∥∥∥∥∥∥
f0

N∏

j=1

s j

∥∥∥∥∥∥

2

,

σ
(e)
1 ≡ 1

‖ f ‖2

N∑

i=1

∥∥∥∥∥∥∥
fi

N∏

j=1
j �=i

s j

∥∥∥∥∥∥∥

2

+ σ
(e)
0 (10)

These measurers satisfy the non-decreasing rule, that is, 0 ≤ σ
(e)
0 ≤σ

(e)
1 · · ·≤σ

(e)
N =1.

This rule allows us to use these measurers as an error analysis tool for the EMPR
approximations.

2.2 The Fluctuation Free Integration method

The fluctuation free integration method uses the Fluctuationlessness Theorem to evalu-
ate multiple integrals numerically. The Fluctuationlessness theorem which was proven
by Professor Demiralp has gone from strength to strength by its utilizations in several
fields.This theorem has been applied to the problems of mathematics, mechanics and
chemistry like numerical integrations, function approximations and quantum optimal
control problems [11–14]. Depicted theorem dictates an equality between two infi-
nite dimensional matrices. The first one is the matrix representation of an operator
standing in infinite dimensional Hilbert space, H , which multiplies its operand by an
analytic, square integrable univariate function, f (x). Thus, f (x) also resides in H .
The second matrix is the image of the matrix representation that stands for the algebraic
multiplication operator which multiplies its operand by the independent variable x ,
under the f function. The descripted equality, of course, turns into an approximation
if the corresponding matrices are restricted to a finite dimensional square matrices. If
the first and the second operators are notated as f̂ and x̂ , respectively, the following
approximation can be written

M (n)

f̂
≈ f

(
M (n)

x̂

)
(11)

where M (n)

f̂
takes place for the truncated matrix representation of the operator f̂ and

M (n)
x̂ stands for the matrix representation of x̂ . Here, the superscript (n), which is a

positive integer, denotes the truncation level.
Momentarily, we should place the matrix representation of f̂ on one side and pay

our attention to the other one, M (n)
x̂ . To construct this matrix, a basis set, constituted by

linearly independent functions, has to be considered. It is not needed that the elements
of this basis set are orthonormal to each other. If they are not orthonormal, they
can be succeeded by using Gram–Schmidt orthonormalization process or Cholesky
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method. Although any basis set possessing the mentioned features can be utilized,
the one including the powers of the independent variable x will be employed for
universality which is an important property to obtain a general algorithm. Thus, the
unorthonormalized basis set can be expressed as follows

Vn =
{

xi−1
}n

i=1
(12)

If Vn is orthonormalized then

Un = {ui }n
i=1 (13)

is obtained. Here, ui s are the orthonormalized elements evaluated by using the fol-
lowing inner product

(g, h) =
1∫

0

dxw(x)g(x)h(x), g, h ∈ H (14)

During the orthonormalization procedure, the weight function, w(x), will be taken as
unit constant function in our further analysis for simplicity. The reason for the usage of
the unit interval in the inner product is again the universality as one can easily confirm.
Using this inner product defined on the relevant interval, ui s are computed as the Shifted
Legendre Polynomials with the coefficients

√
2i − 1. Hereby, an orthonormal basis

set with respect to the inner product given in (14) on the interval [0, 1] is attained.
The entries of the matrix M (n)

x̂ can be calculated under favour of the inner product
given in (14) and the elements given in (13) as

e(n)
i

T
M (n)

x̂ e(n)
j = (ui , x̂u j

) =
1∫

0

dxui (x)xu j (x), i, j = 1, . . . , n (15)

where ei and e j are the unit Cartesian vectors which take zeros as their entries except
that the i th and the j th ones, respectively. The matrix whose i th row j th column
element given above is also called as “Universal Matrix”. On the other hand, entries
of the matrix representation of the f̂ operator can be calculated in a similar way

e(n)
i

T
M (n)

f̂
e(n)

j = (ui , f̂ u j
) =

1∫

0

dxui (x) f (x)u j (x), i, j = 1, . . . , n (16)

Since M (n)
x̂ is symmetric and positive definite, all of its eigenvalues are real and reside

in the interval [0, 1] with no multiplicity. Also, the left and the right eigenvectors related
to a certain eigenvalue are equal. With the help of these facts, M (n)

x̂ can be expressed
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as a linear combination including the outer products of its eigenvectors as

M (n)
x̂ =

n∑

k=1

λkξ
(n)
k ξ

(n)
k

T
(17)

where λks are the eigenvalues and ξks are the related eigenvectors. This expansion is
known as the spectral decomposition of the symmetric matrix, M (n)

x̂ .
Using the Fluctuationlessness Theorem given in (11) and the expansion given in

(17) by combining the definitions (15) and (16) and also considering the reality that
the very first element of the orthonormal basis set given in (13), u1, is 1, the following
result is obtained for the integral of the function, f (x), over the unit interval

1∫

0

dx f (x) =
1∫

0

dxu1(x) f (x)u1(x) = (u1, f̂ u1
)

= e(n)
1

T
M (n)

f̂
e(n)

1 ≈ e(n)
1

T
f
(
M (n)

x̂

)
e(n)

1

= e(n)
1

T
(

n∑

k=1

f (λk) ξ
(n)
k ξ

(n)
k

T
)

e(n)
1 =

n∑

k=1

f (λk)
(

e(n)
1

T
ξ

(n)
k

)2
(18)

Finally, the given univariate integral is rewritten in terms of summations. This relation
is the resulting step of the Fluctuation Free Integration method [19]. To cope with the
multiple integrals of EMPR, the Fluctuation Free Integration method can be utilized.

3 Fluctuation Free Integration based EMPR (FFI-EMPR)

As we have mentioned before, the EMPR method has a serious disadvantage due to
so many multiple integral evaluations. To get rid of this disadvantage, the Fluctuation
Free Integration method can be used. In this work, we aim to apply the properties of
this method to EMPR to construct an efficient method based on piecewise philosophy
that can be used in representing multivariate functions.

To construct the FFI-EMPR method, we need to use the relations given in (7) and
(8) obtained for constant and univariate EMPR components.

The first step is to obtain the structure of the constant EMPR component by taking
the features of the Fluctuation Free Integration method into consideration. Here, we
use unit interval and unit weight for a simple explanation at the beginning. This gives
us the following relation for the constant component

f0 =
1∫

0

dx1s1(x1) · · ·
1∫

0

dxN sN (xN ) f (x1, . . . , xN ) (19)

Here, there are N -tuple integrals and we calculate these integrals one by one in order
by using Fluctuation Free Integration method. For that reason, we have to construct
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the matrix representation of x̂i where 1 ≤ i ≤ N . These matrix representations are
M (n1)

x̂1
,M (n2)

x̂2
, . . . ,M (nN )

x̂N
. Because we do not loose anything from the generality,

we can also use the same single universal matrix instead of all these seperate ones.
In this sense, we use only a single universal matrix with n dimension while some
studies include N number of universal matrices having different dimensions [19].
We denote this matrix by M (n)

x̂ . Using a single matrix representation also avoids
high computational complexity. After the universal matrix construction, as stated
in Sect. 2.2, we have to find the eigenvalues and the corresponding eigenvectors
of M (n)

x̂ .
Now we can start to evaluate N -tuple integrals beginning from the last one by

using the relation (18). The following relation is given to express how the process
proceeds

f0 ≈
1∫

0

dx1s1(x1) · · ·
1∫

0

dxN−1sN−1(xN−1)e
(n)
1

T
n∑

kN =1

[
f
(

x1, . . . , xN−1, λ
(kN )
N

)

× sN (λ
(kN )
N )ξ

(n)
kN

ξ
(n)
kN

T
]

e(n)
1 (20)

where λ
(kN )
N stands for the kN -th eigenvalue of the n × n dimensional matrix M (n)

x̂

and ξ
(N )
kN

is the corresponding eigenvector. If the above equation is reorganized, then
the following expression is obtained.

f0 ≈
n∑

k=1

(
e(n)

1
T
ξ

(n)
kN

)2
1∫

0

dx1s1(x1) · · ·
1∫

0

dxN−1sN−1(xN−1)

× f
(

x1, . . . , xN−1, λ
(kN )
N

)
sN (λ

(kN )
N ) (21)

If we keep on evaluating the remaining integrals then we obtain the constant component
of EMPR as follows.

f0 ≈
n∑

k1=1

· · ·
n∑

kN =1

[
N∏

i=1

(
e(n)

1
T
ξ

(n)
ki

)2
]

f
(
λ

(k1)
1 , . . . , λ

(kN )
N

) N∏

i=1

si (λ
(ki )
i ) (22)

After the determination process of the constant component, we can proceed to obtain
the general structure of univariate EMPR components. For this purpose, we use same
philosophy, that is, we evaluate the integral by starting from the last one and keep on
to evaluate remaining integrals except the i th one as follows.
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fi1(xi1) ≈
n∑

k1=1

· · ·
n∑

ki1−1=1

n∑

ki1+1=1

· · ·
n∑

kN =1

⎡

⎢⎣
N∏

m=1
m �=i1

(
e(n)

1
T
ξ

(n)
km

)2

⎤

⎥⎦

× f
(
λ

(k1)
1 , . . . , λ

(ki1−1)

i1−1 , xi1 , λ
(ki1+1)

i1+1 , . . . , λ
(kN )
N

) N∏

m=1
m �=i1

sm(λ(km )
m ) − f0

(23)

The constant and univariate components given in (22) and (23) are used to obtain the
constant and univariate FFI-EMPR approximants by using the relations given in (9).

4 The Fluctuation Free Integration based piecewise EMPR method

The main idea in this new EMPR based method is to split the whole geometry into
two or more subgeometries and to calculate the FFI-EMPR approximant for each
subgeometry. This means that the new method produces an analytical structure in
each subgeometry and it stands for a piecewise structure. To this end, the steps of
FFI-Piecewise EMPR required to get the approximation are given as follows:

– Specify the total number of subintervals. If each independent variable, xi resides
in the interval [ai , bi ] where 1 ≤ i ≤ N , we split each interval of the related
independent variable into subintervals.

x (1)
i ∈

[
c(1)

i , c(2)
i

]
, x (2)

i ∈
[
c(2)

i , c(3)
i

]
, . . . , x (ni )

i ∈
[
c(ni )

i , c(ni +1)
i

]
,

c(1)
i ≡ ai , c(ni +1)

i ≡ bi , 1 ≤ i ≤ N (24)

That is, we split the interval [a1, b1] into n1 subintervals, the interval [a2, b2] into
n2 subintervals and we keep on splitting the remaining intervals similar to these.

– Create the subgeometries. The total number of these subgeometries must be p =
n1 × n2 × · · · × nN .

D (k) ≡ x ( j1)
1 × x ( j2)

2 × · · · × x ( jN )
N , 1 ≤ k ≤ p, 1 ≤ ji ≤ ni , 1 ≤ i ≤ N

(25)

Although it is not an obligation, all domains for each independent variable are
splitted uniformly in this work.

– Construct all normalized support functions by using the formula given in (2).
– Calculate the constant FFI-EMPR component for each subgeometry by using the

equation given in (22).
– Obtain the constant FFI-EMPR approximant for each subgeometry. To evaluate

these approximants, each constant FFI-EMPR component should be multiplied by
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all corresponding support functions.

π0(x1, . . . , xN )(k) = f (k)
0

N∏

j=1

s j (x j ), 1 ≤ k ≤ p (26)

Thus, a piecewise structure is obtained to make an approximation for a multi-
variate function under consideration. This approximant is called “the constant
FFI-Piecewise EMPR approximant”.

π0(x1, . . . , xN ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (1)
0

∏N
j=1 s j (x j ), x1, x2, . . . , xN ∈ D (1)

f (2)
0

∏N
j=1 s j (x j ), x1, x2, . . . , xN ∈ D (2)

...

f (p)
0

∏N
j=1 s j (x j ), x1, x2, . . . , xN ∈ D (p)

(27)

– Evaluate the relative error values for each constant approximant of each subgeom-
etry.

– Calculate the average of all relative error values to dictate the efficiency on the
whole geometry which is Nπ0 .

– Determine the univariate FFI-EMPR component by using (23) and univariate
approximation for each subgeometry. Similar with the constant FFI-Piecewise
EMPR approximant, we can write the following piecewise structure

π1(x1, . . . , xN ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (1)
0
∏N

j=1 s j (x j ) +∑N
i=1 f (1)

i (xi )
∏N

j=1
j �=i

s j (x j ), x1, . . . , xN ∈ D(1)

f (2)
0
∏N

j=1 s j (x j ) +∑N
i=1 f (2)

i (xi )
∏N

j=1
j �=i

s j (x j ), x1, . . . , xN ∈ D(2)

.

.

.

f (p)
0
∏N

j=1 s j (x j ) +∑N
i=1 f (p)

i (xi )
∏N

j=1
j �=i

s j (x j ), x1, . . . , xN ∈ D(p)

(28)

– Evaluate the relative error values for each univariate approximant of each subge-
ometry.

– Calculate the average of all relative error values to dictate the efficiency on the
whole geometry which is Nπ1 .

The constant and univariate FFI-Piecewise EMPR approximants given in (27) and
(28) now can be used to represent a given multivariate function through a piecewise
structure. The argument of this work is to show that this newly developed method
works better that standard EMPR for many cases. It is also expected that even the
constant FFI-Piecewise EMPR approximant works better than the univariate EMPR
approximant for the same case. To this end, the next section includes some numerical
examples to examine the performance of FFI-Piecewise EMPR as well as to prove the
mentioned arguments.
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5 Numerical implementations

In this section, some certain numerical implementations are given to show the effi-
ciency of our proposed method with the help of some tables and figures. The perfor-
mance examination of the methods are done through the relative error values that are
computed by dividing the norm of the difference between the obtained approximant
and the original function by the norm of the original function itself. This means that
the value most closest to 0 expresses the best approximation quality. Thus, the relative
error values computed will be emphasized in the tables and the obtained approximants
are going to be compared with the original multivariate function under consideration
in the figures. All numerical results obtained in this section were computed by using
MATLAB R2010a under the Linux Ubuntu 10.04 LTS operating system within 20
digits precision.

Since our new method includes the features of Fluctuation Free Integration method
in its structure, we need to construct the matrix representation of the independent
variables of the given problem. That is, we need the matrix, M (n)

x̂ . Here, n is the
dimension of this matrix and in this work we take n as 3. It is well known from the
numerical experiments related with the Fluctuationlessness Approximation Theory
that the results are satisfactory even the dimension of this universal matrix is very
small numbers such as 3 or 4.

The testing multivariate functions are chosen by considering that they should have
different functional structures to allow us to analyze the efficiency of the FFI-Piecewise
EMPR method for different scenarios. These functions, namely from f1 to f7, are
selected from 5 dimensional functional space, each within unit interval and are as
follows

f1(x1, . . . , x5) =
5∑

i=1
xi , f2(x1, . . . , x5) =

(
5∑

i=1
xi

)5

,

f3(x1, . . . , x5) =
(

5∑
i=1

xi

)7

, f4(x1, . . . , x5) =
5∏

i=1
xi ,

f5(x1, . . . , x5) = cos

(
π

5∑
i=1

xi

)
, f6(x1, . . . , x5) =

5∑
i=1

eixi ,

f7(x1, . . . , x5) = x2
1+4x2

2+9x2
3

1+9x2
3+16x2

4+25x2
5

(29)

where the first one is the summation of 5 independent variables. This function has a
purely additive nature. The second multivariate function has monotonously increasing
structure while propagating on all dimensions in the forward direction. For the third
multivariate function, f3, it is possible to revive all the comments about f2. In addition,
the increment of this function is sharper than the previous one. Thus, one may say
that the curvilinearity of f3 is greater than the function f2 since all of its terms has
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Table 1 Relative error values obtained through constant approximants

Np0 N
(2)

π0 N
(4)

π0 N
(8)

π0 N
(12)

π0

f1 0.04106 0.02286 0.01206 0.00619 0.00416

f2 0.11932 0.07064 0.03844 0.02003 0.01353

f3 0.13088 0.08046 0.04459 0.02343 0.01587

f4 0.00000 0.00000 0.00000 0.00000 0.00000

f5 0.97170 0.82935 0.42842 0.21182 0.14078

f6 0.14180 0.04587 0.01229 0.00312 0.00008

f7 0.47297 0.23707 0.11423 0.05581 0.01561

the order 7 which is different from 5. In contrast to f1, the fourth function is chosen
as purely multiplicative to analyze the values of the relative errors while the structure
of the considered multivariate function varies between additivity and multiplicativity.
The fifth function is an oscillatory function since it includes the cosine function. The
functions which have oscillatory structures are always hard to cope with for numerical
approximation and integration methods. As a sixth example, the multivariate function,
which is the summation of univariate exponential functions having different curvature
parameters, is selected to investigate the case for the exponential structures. Finally, f7
is chosen a bit different from the previous ones. This function is selected as a rational
function which has no singularity point over the 5 dimensional real space but may
have some over the complex space because of the polynomial structure appearing in
the denominator.

Tables 1 and 2 include the relative error values obtained through the constant and
univariate EMPR and FFI-Piecewise EMPR approximants respectively. In Table 1,
Np0 stands for the relative error value evaluated for the constant approximation

obtained through the standard EMPR method while N (k)
π0 s stand for the relative error

values of the constant FFI-Piecewise EMPR approximant where k lies between 2 and
12. That is, the implementations have uniformly divided 2, 4, 8 and 12 subintervals to
be used in modelling the constructed problems through the testing functions given in
(29).

Table 2 has the same characteristics in terms of total number of subintervals while
Np1 and N (k)

π1 s stand for the univariate standard EMPR and FFI-Piecewise EMPR
approximants respectively.

The results given in both Tables 1 and 2 show us that the FFI-Piecewise EMPR
method works better than the standard EMPR method for all testing functions. In
addition, it can also be observed that the increment in the number of subintervals affects
the approximation quality well and rises the efficiency up. Doubling the number of
the subintervals halves the value of the corresponding relative error. This fact is one of
our aims which we want to emphasize in this work. The results also show that the FFI-
Piecewise EMPR method is still efficient even the sharpness of the function increases.
One can say that even using 4 subintervals in modelling, very succesfull results are
obtained for the most of the given testing functions. The proposed method can also
handle the rational structure, that is, f7. The FFI-Piecewise EMPR method can easily
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Table 2 Relative error values obtained through univariate approximants

Np1 N
(2)

π1 N
(4)

π1 N
(8)

π1 N
(12)

π1

f1 0.03898 0.02181 0.01154 0.00593 0.00399

f2 0.06880 0.04408 0.02504 0.01332 0.00906

f3 0.06301 0.04356 0.02581 0.01401 0.00959

f4 0.00000 0.00000 0.00000 0.00000 0.00000

f5 0.97170 0.51205 0.27443 0.13601 0.09042

f6 0.01139 0.00293 0.00074 0.00018 0.00008

f7 0.28065 0.10424 0.04468 0.02119 0.01387

Table 3 Standart deviation of relative error values obtained in the related subintervals for each constant
FFI-Piecewise EMPR approximant

#2 #4 #8 #12

f1 0.02573 0.01940 0.01417 0.01170

f2 0.06885 0.05445 0.04072 0.03387

f3 0.07130 0.05844 0.04445 0.03717

f4 0.00000 0.00000 0.00000 0.00000

f5 0.00000 0.27707 0.25509 0.22322

f6 0.01040 0.00312 0.00078 0.00001

f7 0.28476 0.19483 0.13530 0.03674

overcome the disadvantages occured by rationality and decreases the relative error
values drastically while the number of subintervals is increasing. It is obvious that the
standard EMPR is very far away from expressing this function accurately.

When we compare the relative error results obtained through the constant and uni-
variate FFI-Piecewise EMPR approximants, of course, the results obtained through the
univariate approximations are better than the ones obtained by the constant approxi-
mations. However, the relative error values obtained through constant approximations
in all testing functions are quite acceptable as the representation procedure. Hence, to
reduce the mathematical and computational complexity of the method, even constant
FFI-Piecewise EMPR approximants with 4 subintervals can be used instead of uni-
variate approximations for the representation of the considered multivariate function.
To this end, this work shows that we have two alternatives through FFI-Piecewise
EMPR philosophy. One is using constant approximations to reduce the mentioned
complexities within acceptable errors while the other is representing the multivariate
function under consideration through the univariate approximants with better quality
but higher complexity.

One additional examination about the performance of our new method is to observe
the stability of the method in the subintervals used to construct the piecewise structure.
For this purpose, after evaluating the relative error value for each subgeometry, we
calculate the standard deviation of the obtained relative errors for the approximant
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Table 4 Standart deviation of relative error values obtained in the related subintervals for each constant
FFI-Piecewise EMPR approximant

#2 #4 #8 #12

f1 0.02428 0.01836 0.01343 0.01110

f2 0.03497 0.02988 0.02323 0.01957

f3 0.02750 0.02600 0.02119 0.01812

f4 0.00000 0.00000 0.00000 0.00000

f5 0.00000 0.10680 0.12455 0.11422

f6 0.00000 0.00000 0.00000 0.00000

f7 0.09567 0.05470 0.03791 0.03110

which represents the considered testing function. That is, when we have, for example, 4
relative error values for the FFI-Piecewise EMPR approximant with 4 subgeometries,
we evaluate the standard deviation of these results to check out the stability of the
method in terms of performance quality. The results are given in Tables 3 and 4 for
the constant and univariate FFI-Piecewise EMPR approximations respectively. When
we examine the tables, it is clear that almost all the standard deviation values are
very close to 0 which means that our method works very well in all subgeometries
while producing a piecewise structure for the considered testing function. The only
problematic case is for the cosine function which has an oscillatory structure. This is an
expected case and since for representing the whole geometry through FFI-Piecewise
EMPR is successfull, this problematic case can be ignored.

Besides all these, we have two bivariate functions to analyze. We choose the fol-
lowing bivariate functions since we desire to deal with their surface plots.

f8(x1, x2) = (x1 + x2)
4 , f9(x1, x2) =

10 sin

(√
x2

1 + x2
2

)

√
1 + x2

1 + x2
2

(30)

The first of these two testing functions is a multinomial. The other one has a little com-
plicated structure involving sine, square root and fraction. The figures are constructed
by plotting exact values of the corresponding function over the unit interval, [0, 1],
and the constant approximants obtained utilizing standard EMPR and FFI-Piecewise
EMPR with 4 subintervals. The colors used in figures for the exact function, standard
EMPR and FFI-Piecewise EMPR approximants are red, blue and green respectively. In
Fig. 1, it can be seen that the constant standard EMPR approximant represents the con-
sidered function well for the domain from the lower bound to a certain point. After that
point, the curvature of the function under consideration grows and EMPR approximant
can not confront this increment. On the other hand, constant FFI-Piecewise EMPR
approximant can overcome this situation easily. It can be verified that the green surface
overlaps the exact surface which is the red one in the vicinity of the upper bounds of
the independent variables.
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Fig. 1 Exact function f8 (red), constant standard EMPR approximant (blue), constant FFI-Piecewise
EMPR approximant with 4 subintervals (green) (Color figure online)

Fig. 2 Exact function f9 (red), constant standard EMPR approximant (blue), constant FFI-Piecewise
EMPR approximant with 4 subintervals (green) (Color figure online)

In Fig. 2, it is obvious that the green surfaces obtained by applying FFI-Piecewise
EMPR to the relevant function express the exact surface more accurately than standard
EMPR does for almost all over the domain. This shows the efficiency of the FFI-
Piecewise EMPR method one more time.

6 Conclusion

The EMPR method has a finite expansion composed of a number of less-variate func-
tions and is used to approximately represent a given multivariate function in terms
of the components of its expansion. This expansion has also support functions in its
structure which makes EMPR different from HDMR. These support functions also
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allow the method to work efficiently for representing multivariate functions having
different types of natures.

In this work, we apply the Fluctuation Free Integration algorithm to the steps of
the EMPR method to evaluate the multiple integrals appearing in the method numeri-
cally, not analytically which reduces the mathematical and computational complexity
of EMPR. This results in a new method named as FFI-EMPR. In addition, we also
try to increase the performance of this FFI-EMPR method and a new piecewise based
EMPR philosophy is proposed to determine better approximations to the given mul-
tivariate functions. This method is called FFI-Piecewise EMPR. It splits the whole
problem geometry into a number of subgeometries and obtains an approximant for
each subgeometry. This approach constitutes a piecewise structure at the end.

We used constant and univariate FFI-Piecewise EMPR approximants in represent-
ing multivariate functions. Then, we compare the obtained approximants with the
standard EMPR approximants and the original function. The numerical results given
through tables and figures in the numerical implementations section show us that the
FFI-Piecewise EMPR approximants are more successfull than standard EMPR in rep-
resenting multivariate functions. Besides, the relative error values also show that the
approximations are quite sufficient in representing functions when compared with the
original ones. In detail, we can conclude that even the constant FFI-Piecewise EMPR
approximant with 4 subgeometries works better than the univariate EMPR approxi-
mant in the representation process of multivariate functions. Of course, as the number
of subintervals increases the performance of FFI-Piecewise EMPR gets better. But,
not to increase the computational complexity one can easily stop at 4 in deciding the
total number of subgeometries for our proposed method. This brings us a great oppor-
tunity in modelling, that is, we can make a better approximation without increasing
the computational complexity of the algorithm.

In addition, the proposed method of this work successfully represents the multi-
varite functions even they have high curvature. It is known that the representation of
multivariate functions having high curvature is quite hard by using standard methods
in numerical analysis. This success comes from splitting the given geometry through
the FFI-Piecewise EMPR. This situaton can be easily seen by examining the figures
of the previous section.

Of course, there are also some other ways to obtain a representation for a multi-
variate function through EMPR based methods. One way may be the support function
optimization process which needs a detailed approach in solving nonlinear equation
systems appearing in its structure and it is totally out of scope of this work. Hence,
this fact is left as a future work.
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